Approximation algorithms for combinatorial optimization under uncertainty
نویسنده
چکیده
Combinatorial optimization problems arise in many fields of industry and technology, where they are frequently used in production planning, transportation, and communication network design. Whereas in the context of classical discrete optimization it is usually assumed that the problem inputs are known, in many real-world applications some of the data may be subject to an uncertainty, often because it represents information about the future. In the field of stochastic optimization uncertain parameters are usually represented as random variables that have known probability distributions. In this thesis we study a number of different scenarios of planning under uncertainty motivated by applications from robotics, communication network design and other areas. We develop approximation algorithms for several KP-hard stochastic combinatorial optimization problems in which the input is uncertain modeled by probability distribution and the goal is to design a solution in advance so as to minimize expected future costs or maximize expected future profits. We develop techniques for dealing with certain probabilistic cost functions making it possible to derive combinatorial properties of an optimum solution. This enables us to make connections with already well-studied combinatorial optimization problems and apply some of the tools developed for them. The first problem we consider is motivated by an application from Al, in which a mobile robot delivers packages to various locations. The goal is to design a route for robot to follow so as to maximize the value of packages successfully delivered subject to an uncertainty in the robot's lifetime. We model this problem as an extension of the well-studied Prize-Collecting Traveling Salesman problem, and develop a constant factor approximation algorithm for it, solving an open question along the way. Next we examine several classical combinatorial optimization problems such as binpacking, vertex cover, and shortest path in the context of a "preplanning" framework, in which one can "plan ahead" based on limited information about the problem input, or "wait and see" until the entire input becomes known, albeit incurring additional expense. We study this time-information tradeoff, and show how to approximately optimize the choice of what to purchase in advance and what to defer. The last problem studied, called maybecast is concerned with designing a routing network under a probabilistic distribution of clients using locally availabel information. This problem can be modeled as a stochastic version of the Steiner tree problem. However probabilistic objective function turns it into an instance of a challenging optimization problem with concave costs. Thesis Supervisor: David R. Karger Title: Associate Professor
منابع مشابه
A Short Survey of Aproximation Algorithms for Combinatorial Optimization under Uncertainty∗
This paper briefly describes three well-established frameworks for handling uncertainty in optimization problems. Our focus is mainly on combinatorial optimization and on the development of approximation algorithms under the discussed frameworks. In particular, we give a brief overview of Stochastic Programming, Robust Optimization, and Probabilistic Combinatorial Optimization, and list approxi...
متن کاملStochastic Combinatorial Optimization under Probabilistic Constraints
In this paper, we present approximation algorithms for combinatorial optimization problems under probabilistic constraints. Specifically, we focus on stochastic variants of two important combinatorial optimization problems: the k-center problem and the set cover problem, with uncertainty characterized by a probability distribution over set of points or elements to be covered. We consider these ...
متن کاملAnalysis of approximation and uncertainty in optimization
We study a series of topics involving approximation algorithms and the presence of uncertain data in optimization. On the first theme of approximation, we derive performance bounds for rollout algorithms. Interpreted as an approximate dynamic programming algorithm, a rollout algorithm estimates the value-to-go at each decision stage by simulating future events while following a heuristic policy...
متن کاملHedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems
We study two-stage, finite-scenario stochastic versions of several combinatorial optimization problems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic (shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representatives with different approximation ratios. The approximation ratio of the s...
متن کاملRobust combinatorial optimization with cost uncertainty
We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates better Valueat-Risk objective f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003